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Abstract

Caches are integral to the performance of the memory sub-
system for any processor. In contemporary literature, it is
common to use metrics such as a count of memory misses
over some number of instructions, or to use the rate of
instruction issue as a proxy for true system performance
as indicators of the performance of a last level cache. We
introduce a novel metric called “Time to Recache” (TTR)
that more directly represents the closeness with which any
technique approaches the optimal caching scheme. As an
example of how this metric might be used, we include an
analysis of a few traditional and modern replacement poli-
cies using cycle-accurate processor and cache simulation.

1 Introduction

Caching is used in processor design to keep data close to
the computational units, which improves memory access
latency, and reduces off-chip memory bandwidth. Multi-
level caches store data in progressively larger, and further
away structures. The increased distance, and especially
the increased size, of higher levels of cache mean that the
higher levels of cache have longer latencies to access. If all
of the on-processor caches fail to contain the data being
accessed by the processor right now, then a long latency
and high energy access to main memory is used to fetch
the data into the caches so it will be available for the next
time that data is accessed.

The Last Level Cache (LLC) is especially important for
performance because it represents the last opportunity for
a memory access to remain on-chip, without having to
fetch data from the DRAM main memory. While an LLC
cache hit may take 10x more cycles to complete than an
L1 hit, an LLC miss takes an additional 10x longer to
service. An LLC miss not only takes longer to complete,
but activating the DRAM system also uses more energy
to service the request. From an energy perspective, an

LLC hit consumes only the energy to service the memory
request by the LLC. On the other hand, an LLC miss
requires the energy to check the LLC, notice that it’s a
miss, and then fetch the data from DRAM, possibly also
needing to write back dirty data to DRAM which has been
displaced by the incoming data.

In an effort to improve the effectiveness of the LLC and
reduce the number of DRAM accesses, a number of cache
management policies have been proposed, often based
around having a set associative cache, such as the Least
Recently Used (LRU) policy, Not Recently Used (NRU)
policy, and others. Each of these cache management poli-
cies attempts to evict data that is no longer deemed useful
in favor of newly accessed data which was not found in the
LLC before. Recently the Re-reference Interval Prediction
(RRIP) [6] cache management policy has been proposed
as a way to improve LLC performance by attempting to
predict the future usefulness of cache blocks. RRIP is
represented by two distinct varieties, namely Static RRIP
(SRRIP) and Dynamic RRIP (DRRIP), which each use
a different insertion policy when dealing with incoming
cache blocks. Both SRRIP and DRRIP are discussed at
length in section 4.3.

In this paper we explore the effectiveness of the Time
to Recache (TTR) metric in offering insight into why dif-
ferent cache management policies perfor better than oth-
ers. This metric refers to the time spent by a cache line
after it has been evicted from the LLC and before it is
fetched again. It is related to, but distinct from, the no-
tion of “reuse distance,” which refers to the amount of
time between successive accesses to a given cache block.
A long TTR for a given cache line would indicate that
the cache policy correctly identified that the line could be
evicted without causing the memory system to bring the
line back.
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2 System Performance Metrics

Computer performance is dependent on a variety of fac-
tors, ranging from very low level features like the latency of
individual functional units, bypass networks, and out-of-
order hardware, up through very high level features such as
operating systems, disk I/O, and network latency. In this
paper we focus on the performance of the LLC. The qual-
ity of an LLC is typically gauged by two factors, the im-
provement in performance, measured in Instructions Per
Clock (IPC), that it affords to the processor it backs, and
the reduction of Misses Per 1000 Instructions (MPKI),
which equates to a reduction in the number of long la-
tency DRAM main memory accesses.

2.1 IPC

The number of instructions a CPU can complete in a single
clock cycle can be equated with its absolute performance.
If a processor can complete more instructions in a given
clock cycle than another, its performance is better. Hard-
ware caches play a critical role in boosting this number.
The closer that data sits to the functional units, the higher
performance can be. In a typical three level cache hier-
archy, it can take 10x longer to access the third level of
cache than the first, and another 10x longer to access main
memory. Finding data as close to the processor as possible
is critical for high performance.

2.2 MPKI

One of the LLC’s main jobs is to redue the number of
DRAM accesses that are performed. Each DRAM read ac-
cess includes occupying a memory controller’s read buffer,
waiting for this access’s turn, and then sending that read
request across long wires to distant DRAM chips, activat-
ing those DRAM chips, and then finally sending the data
back to the memory controller over several more cycles.
This description of events omits what happens to the data
after it gets back to the memory controller, and also ig-
nores the consequences of needing to write dirty data from
the LLC back to the cache. There is a lot of work that has
to be done in the event of an LLC miss, so reducing the
MPKI of a cache is a good goal, making MPKI a popular
and important metric to consider.

3 Time To Recache

In this work we propose the Time to Recache (TTR)
methodology for examining the behavior and effectiveness

of the LLC. TTR is defined as the amount of time (mea-
sured in cycles or seconds) that a cache block spends out-
side of the cache after it has been evicted and before it is
accessed again. Note that this is distinct from the concept
of reuse distance. Reuse distance is the time between suc-
cessive accesses to a piece of data or cache block. TTR
doesn’t take into account the amount of time a cache block
spent in the LLC before it was evicted. TTR is only con-
cerned with the time spent after eviction and before reuse.
Belady’s optimal algorithm [3] for cache eviction always

evicts the cache block whose reuse is furthest in the future,
allowing that free space to be used as long as possible
by other data before being recached. It is impossible to
know at runtime for general workloads which cache block
has the furthest reuse distance, hence why there are so
many different caching policies that use various heuristics
in an effort to approach the effectiveness of this optimal
algorithm.
Measuring the IPC and MPKI of a workload using one

caching policy, and comparing that to the IPC and MPKI
of running that workload with a different caching policy
can give you some sense of how close each of those caching
policy comes to the optimal solution. This is, however,
and indirect approach to quantifying how well a caching
policy is performing. Tracking the TTR is a direct means
of comparing two caching policies. In particular, Belady’s
optimal algorithm would generate an optimal measure for
TTR.
TTR is an effective metric because it asks the question

every time a cache block is brought into the cache, “have
I seen this block before, and if so, how long ago was it?”
If caching policy A answers this question with “4000 cy-
cles ago,” and caching policy B answers this question with
“6000 cycles ago,” then caching policy B has done a bet-
ter job at evicting that cache block early and allowing that
space to be used by other data. With TTR, a higher num-
ber is better. A low TTR number means that the cache
block was evicted and then recached very soon afterwards,
suggesting that it should not have been evicted in the first
place.
In Figure 1, we see an example of a TTR graph for the

CG benchmark for both a 4MB LLC and an 8MB LLC
and across the four cache insertion policies we tested. A
TTR graph is a line-graph representation of a histogram
of TTR values. The majority of the results in this paper
are presented in this format. The bins of a TTR graph,
along the X-axis, are 10,000 cycle-long periods of time that
a cache block has been absent from the cache before re-
turning. The Y-axis of the graph is the number of cache
blocks that were absent from the cache for that long be-
fore returning. For example, if 10 cache blocks had been
recached after being absent from the cache for 40,000 cy-
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Figure 1: CG Time to Recache

cles each, then the 4th bin of the graph would have the
value of 10. Note that the Y-axis for each chart is different
to show the interesting parts of the charts. For example,
the 8MB LLC results in many fewer misses than the 4MB
LLC, so the Y-axis is much smaller in most benchmarks.

A TTR graph shows the distribution of how long cache
blocks were absent. The intuition of how to read a TTR
graph is as follows. A high Y value is generally bad, be-
cause it means there were many evictions and recaches.
Similarly, recaches that happen at a low TTR bin num-
ber (low X value in the graph) are considered bad be-
cause it means that when a cache block was evicted it was
soon recached, suggesting that cache block should not have
been evicted in the first place. Many TTR graphs include
humps in their distribution. Humps that appear at low
TTR values are generally worse than humps that appear
at high TTR values, although the Y magnitude of the
hump must also be considered. High Y magnitude humps
are generally worse than low magnitude humps, although
the X location of these humps is also important.

A series of charts appears at the end of this paper de-
tailing a set of results from our simulations. Details of
how these data were generated can be found in Section 4.
CG is an interesting comparison for this section because
one can clearly see the distinction between the different
caching policies. In particular, LRU and NRU look very
similar and SRRIP shifts the chart slightly to the right
which corresponds with an increase in performance. DR-
RIP shows a significant change that will be discussed more
later, but intuitively shows a drastic increase in caching
behavior by reducing the number of misses and increasing
the time between subsequent misses to the same line.

4 Methodology

We gathered our TTR and other performance statistics
using the Virtutech Simics [8] full system simulator version
3.0.x.

4.1 Simulation Parameters

We model an 8-way Chip Multiprocessor of ultraSPARC
III cores. Our processing cores are in-order with 32 KB 8-
way L1 instruction and data caches with a 3 cycle latency.
Each core also has a private, 256 KB 8-way L2 cache with
a 10 cycle latency. The L2 and L1 private cashes are non-
inclusive with respect to one another. All cores share a
16-way L3 cache, which is inclusive of the contents of the
L2 and L1 caches, and is the last level of cache before
DRAM. The size of this LLC varies between experiments,
and we collected data using a 4 MB, and 8 MB L3 cache.
Off-chip memory accesses have a static 300 cycle latency to
approximate best-case multi-core memory timings as seen
by Brown and Tullsen [4]. Only memory operations are
modeled in detail and all non-memory operations are given
a latency of 1. Since we use a three level cache hierarchy,
a large number of memory accesses which would normally
influence the LLC replacement policy are filtered out by
the L1s and large L2s.

4.2 Benchmarks

We use a selection of benchmarks chosen from the Nas
Parallel Benchmark(NPB) Suite [1] and Spec2k6 bench-
mark suite [5]. The NPB benchmarks are single program,
multi-threaded, and use the W-size reference input. The
Spec2k6 benchmarks are multi-programed, running eight
copies of the given benchmark. As we move to larger
LLCs, the differences between cache policies running the
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NPB benchmarks becomes less pronounced, because the
W-size working set becomes more and more cache resi-
dent. Many of the Spec2k6 benchmarks have much larger
working sets and continue to experience many cache misses
even with larger caches. There is no fairness policy or
static partitioning of the LLC, so all threads and programs
have equal access to LLC capacity.
For each benchmark, we fast-forward to the middle of

program execution and then spend 100 million instruc-
tions per core warming up the caches. After this, we track
our performance statistics and gather TTR samples for
another 250 million instructions per core. Fast-forwarding
is done to the beginning of the region of parallelized work
for the NPB benchmarks, and for 20 billion instructions
for each of the Spec2k6 benchmarks.

4.3 Cache Management Policies

In our experiments we analyze the differences between four
LLC management policies, namely Least Recently Used
(LRU), Not Recently Used (NRU), Static Re-reference In-
terval Prediction (SRRIP), and Dynamic Re-reference In-
terval Prediction (DRRIP) [6]. A brief description of each
policy follows in the context of an LLC.
LRU works by maintaining a list with a head and a tail

for each set in the LLC. When a cache line enters the LLC,
it is placed at the head of the list for its cache set. When a
cache line needs to be removed to make space for another,
the tail is chosen and evicted. Every time a cache line is
reused, it is promoted to the head of the list.
NRU works by maintaining a 1-bit counter for each

cache block in the LLC. When a cache block is first
brought into the LLC its counter is set to 0. When a
cache line needs to be removed from a set, a scan is done
to see if any have their counter set to 1. If a 1 is found,
then it is evicted. If no 1 is found, then all counters are
incremented and the scan to find a 1 repeats. Every time
a cache line is reused, its counter is set to 0.
SRRIP and DRRIP both work on the basis of Re-

reference Interval Prediction, which is similar in concept
to a 2-bit NRU-type policy, where all cache blocks have a
2-bit counter instead of NRU’s single bit. When a cache
block is brought into the cache, it is assigned an initial Re-
reference Prediction Value (RRPV) for its counter. When
a cache block needs to be evicted, a scan is done to find
a block with an RRPV of 3, and that block is evicted. If
no 3 is found, all RRPVs in the set are incremented, and
the process is repeated. This continues until a 3 is found
and evicted. Every time a cache line is reused, its counter
is set to 0.
SRRIP works by statically inserting blocks with an

RRPV of 2. DRRIP has the option of inserting with an

RRPV of 2 or 3, depending on which is performing better
at the time. If DRRIP decides to insert a block with an
RRPV of 3, there is a small chance that it will insert the
block with 2 instead.
This paper does not seek to validate or debunk the

claims put forth in the works that propose any of the
above mentioned caching policies. The intent of this pa-
per is to analyze and visualize the different behaviors of
varied caching policies with respect to the TTR metric.

4.4 TRR Data Collection

We collect TTR data at run time during our Simics sim-
ulations. Every time a block is evicted from the LLC its
address is added to a list that tracks all of the previous 8
million evictions from the cache, along with a timestamp
of when the eviction occurred. When a cache block is
fetched to be placed into the LLC, its address is compared
against the list of 8 million recent evictions, searching from
the most recent first. If there is a match, then we consider
that to be a recache, and we increment the TTR bin corre-
sponding to the amount of time the cache block spent out
of the cache. We only track recaches that happen within
40 million cycles, as recaches within this window seem to
have the greatest impact on performance. Depending on
the application of TTR, it may be interesting to extend or
reduce the window in which recaches are tracked.

5 Results

In this section we show the results of TTR tracking for
our different benchmarks and cache management policies.
As stated earlier, the purpose of this paper is not to show-
case the relative performance of one caching policy over
another, but is rather to show the effectiveness of the
TTR visualization method at giving insight into system
performance based on cache behavior. Furthermore, no
attempt was made to ensure that the simulation windows
we used in gathering these statistics is necessarily rep-
resentative of program execution overall. For this reason,
the performance numbers for the cache policies considered
here may differ from previously published results for those
cache policies. Our goal is merely to show that TTR vi-
sualization is a useful way to explain the performance we
observed.
Our results are presented by showing the TTR graphs

for LRU, NRU, SRRIP, and DRRIP for each of the bench-
marks, using both 4 MB and 8 MB. When looking at the
TTR visualizations for a given benchmark and a given
cache size, the scale for all four component graphs (LRU,
NRU, SRRIP, and DRRIP) is the same in both X and
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Figure 2: Time to Recache
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Y directions, so they are all directly comparable. When
moving between the 4 MB and 8 MB visualizatoins, the
scales may be different. Figure 2 shows some of the most
interesting results, and Figures 3-5 can be found at the
end of the paper.

6 Related Work

Creating good cache line replacement policies is a well
studied area of computer architecture, and several papers
have addressed on this problem. In general it is the goal
of every cache policy design to keep around truly reused
data while evicting data that will not be reused for a very
long time, but we mention here as related work the studies
whose approach explicitly looks at reuse distance or some
variation of it as a part of its design or motivation.

Scavenger [2] investigates the concept of eviction-use
distance as motivation for their Scavenger LLC architec-
ture, which identifies cache blocks that are recently missed
in the LLC, and then puts them into a separate region of
cache that protects them from their frequent eviction. In
their motivation for this work, Basu et. al. [2] mentions
large Eviction-Use distance as one of the major contribu-
tors to the problem and presents static values for Eviction-
Use distance for several benchmarks. This differs from
TTR visualization in that they distilled the entire phe-
nomenon down into a single value, and TTR visualization
shows the spectrum of all eviction-use distances.

Keramidas et. al. [7], seek to genuinely predict the reuse
distance of cache blocks by using the program counter
(PC) of a memory access to index into a predictor struc-
ture, which is updated when a reuse has been detected.
TTR visualization does not take the PC of memory op-
erations into account when plotting out recaching time,
although it could be interesting for future work to look at
the TTR graphs for each individual memory operation PC
in a program.

Manikantan et. al. [9, 10], identify delinquent memory
operation PCs and track histograms of the next-use of the
cache blocks brought in by them. Some of the ways of the
LLC are dedicated to blocks brought in by the delinquent
PCs, so that they do not pollute the rest of the ways. This
work only tracks reuse within a few dozen LLC misses of
when a block is last accessed, so their notion of reuse is
much more resitricted than that in TTR visualization.

7 Conclusions

We have presented a novel cache performance metric we
call Time-To-Recache (TTR) and have demonstrated how

it can be used to analyze the cache behavior of a given
system. While we have not shown a quantitative measure
based on the TTR plots that can be used in performance
comparisons, we believe there are other ways that TTR
can benefit computer architects. For example, TTR can
be used to discover reuse intervals of a given program by
inspecting the periods where TTR is hot. Additionally,
by comparing different cache sizes a designer can see how
the cache size affects the ability of the cache to work ef-
fectively.
We anticipate that TTR can be used for a variety of

applications from cache design for computer architects,
through low-level programmers laying out program mem-
ory to large distributed data center memory caches man-
aging many terabytes of data on even slower and energy
hungry drives. Each type of design will use TTR in a dif-
ferent way, but this new method for visualizing data can
be used to great effect and success.
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Figure 3: Time to Recache
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Figure 4: Time to Recache
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Figure 5: Time to Recache
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