A Time-to-Recache Case Study

Eric Storm

Josef Spjut

Department of Engineering, Harvey Mudd College
March 28, 2014

Abstract

We present a case study of using the time to recache (TTR)
metric to choose which cache configuration is optimal for a
given benchmark and replacement policy. This work builds
on prior work describing and implementing the TTR metric,
and concludes that, while TTR can provide visualizations of
cache behavior to build designer intuition into the behavior of
a particular cache for a particular benchmark, the traditional
method of simulating a wide variety of cache configurations
to decide which is optimal is still required.

1. Introduction

Time to Recache(TTR) is an interesting metric to measure
cache performance, but thus far few case studies exist to show
its usefulness [5, 2]. This paper represents one such case study
to show how TTR can be used to assist a cache designer in
finding the optimal cache configuration. While in this particu-
lar example, it would have been just as practical to use another
cache metric, like hit rate, or misses per 1000 instructions,
TTR was useful in this case.

The idea behind this is that if you were to run a program
with a given cache configuration and replacement strategy, you
would want to minimize the miss rate. However if you only
have the miss rate, you have to blindly guess what cache con-
figuration would improve the miss rate. This means that you
essentially have to test all possibilities in the solution space,
which can take a significant time to simulate. By using TTR as
a guide, you can gain insight into what will improve your miss
rate, which allows you to selectively examine cache configu-
rations to get to the optimal solution. This could potentially
save an engineer considerable time waiting for simulations to
run in situations where computing resources are limited or a
quick decision is required.

2. Methodology and Results

We used the simulation framework [3] used previously for
TTR studies [2] to generate TTR results. In addition, we
implemented a web-based visualization tool that was used to
generate all of the figures in this paper. For each figure, note
that the legend identifies each simulation as follows:

benchmark.policy.setbits-linebits-associativity

where benchmark is the application trace being used, policy
describes how the cache chooses how to replace lines
when there is a conflict, and setbits, linebits, and

associativity all represent the cache configuration for a
particular simulation.

The procedure for interpreting TTR curves is as follows.
First, we choose to hold the cache size constant. With this
constraint, we have three parameters that can be varied, the
number of sets, the line length, and the number of ways (asso-
ciativity). As discussed above, a cache configuration is shown
as (set bits)_(line bits)_(associativity ways). For example the
configuration 5_6_4 has 2° sets, 2° bytes per line and 4 as-
sociativity ways. Because the cache size is held constant, an
increase in any one parameter must be accompanied by a de-
crease in another parameter. Thus, if we limit ourselves to
varying as little as possible at a time, we have six possible
ways to modify a cache configuration:

Increase associativity, decrease sets

Increase associativity, decrease line length

Increase sets, decrease line length

Increase sets, decrease associativity

Increase line length, decrease sets

Increase line length, decrease associativity

From this, it is clear that without any insight into the direc-
tion that will lead to improvement, enumerating all possibil-
ities would take exponential time! No need to fear, because
TTR will allow us to apply heuristics to quickly converge on
the optimal cache configuration. To demonstrate this in action,
here’s an example:

A

sp_omp.srrip.5_6_8.dat Misses: 34194

2000

1000

0 50000 100000

Figure 1: sp_omp.srrip.6_6_8

For this case, we use sp_omp from the NAS Parallel Bench-
marks [1]. Among the traces that we have access to, it is a
relatively cache intensive program, which makes it a good
candidate to optimize. Additionally, we only consider a single



cache replacement policy at a time. So for this example, we
search for the optimal cache configuration using the Static
Re-reference Interval Prediction (SRRIP) replacement scheme
from Jaleel et. al. [4]. To begin, we arbitrarily select the 6_6_8
cache configuration. The TTR curve for this is in Figure 1.

We begin by explaining the plot in Figure 1 for the uniniti-
ated, since none of the plots in this paper have any axis labels,
but they all use the same axes. The x axis is memory accesses
to recache. Essentially, if a line is evicted from the cache and
brought back in after a small number of memory access, it will
end up close to the y axis. The y axis is the number of recache
occurences of a particular duration that occur in the course of
sampling. Note that the data is also bucketed and was sampled
with a warmup period to remove cumpolsory misses. Notice
in the legend that the series name is listed and includes the
total misses, which we can use as a proxy for miss rate since
the same number of cycles was run for each TTR curve we are
comparing.

So, how do you interpret this graph? One thing to notice
is what we call the rapid recaching (RR), which might also
be referred to as thrashing. In this case, we see that among
the roughly 34000 misses, only about 2200 were due to rapid
recaching. This means that we can afford to decrease asso-
ciativity and increase either the number of sets or the line
length. Without any additional information, we have no good
way to determine whether line length or set number should be
increased. we found that by choosing either, it will eventually
converge on the same answer. So for the purposes of brevity,
we first increase the number of sets. This makes the new cache
configuration 7_6_4 which is added in Figure 2.

sp_omp.srip.6_6_8.dat Misses: 34194
Sb_omp.srip.7_6_4.dat Misses: 18886

2000

1000

0 50000 100000
Figure 2: sp_omp.srrip.7_6_4

From this, we see that there is a signficant decrease in misses
and the decrease comes roughly equally from all parts of the
TTR curve. Additionally, despite decreasing associativity, the
rapid recaching is still quite low. This suggests that decreasing
the associativity to increase the number of sets, this results in
a cache configuration of 8_6_2, which is added in Figure 3.

We see that again we see an improvement in the misses.
However, now the rapid recaching has skyrocketed! This

3000

at Misses: 34194
at Misses: 18886
at Misses: 12978

sp_ompsrrip
sp_ompsrrip
| Msp_ompsrip

2000 |

1000

100000

Figure 3: sp_omp.srrip.8_6_2

suggests that the increase in number of sets was beneficial, but
the decrease in associativity was detrimental. Therefore, we
try to increase associativity at the expense of line length, which
gives the new cache configuration 8_5_4 found in Figure 4.

3000

sp_omp.smip.8_6_2.dat Misses: 12378
sp_omp.srmip.8_5_4.dat Misses: 10908

2000

1000

50000 100000
Figure 4: sp_omp.srrip.8_5_4

We again see improvement in the number of misses, how-
ever in this case, the improvement is due almost entirely to a
decrease in the rapid recaching. This suggests that we may
have room to further decrease the line length. Since the rapid
recaching is not significantly larger than the slower recaching,
this suggests that we use the decreased line length to increase
the number of sets, to get a new cache configuration of 9_4_4
in Figure 5.

We see very minor improvement in the misses, because the
slower recache rates have gone down but the rapid recaching
has skyrocketed. This suggests that we increase the associativ-
ity. Lacking any intuition for whether line length or number
of sets should be decreased, we abritrarily choose to decrease
the line length so that we now have 9_3_8 as in Figure 6.

We see that the miss rate increased. This is due to an in-
crease in the rapid recaching without significant improvement
in the slower recaches. This leaves the only reasonable place
for improvement to be to go back to the 9_4_4 configuration
and decrease the number of sets instead of the line length, to
get 8_4_8 found in Figure 7.



3500

sp_omp.srrip.6_6_8.dat Misses: 34194
'sp_omp.srrip dat Misses: 13856
Msp_omp.srrip. dat Misses: 12978
Misp_omp.srrip.8_5_4.dat Misses: 10908
Wisp_omp.srip.9_4_4.dat Misses: 9959

3000 |

2000 \‘

1000 |4}

A
i e e e

0 50000 100000

Figure 5: sp_omp.srrip.9_4_4

Sp_omp.smip.8_6_2.datMisses: 12978
'sp_omp.srrip at Misses: 10908
aso0] ! Wsp_omp.srmip.9_4_4.datMisses: 9959

Msp_omp.srrip.9_3_8.dat Misses: 10908

0 50000

Figure 6: sp_omp.srrip.9_3_8

We see that again there is not an improvement in misses
relative to 9_4_4. We find that the rapid recache went down
considerably, however there is no way to increase the associa-
tivity that we have not already tested! So we conclude that the
optimal cache configuration is 9_4_4. Having run nearly all
of the reasonable cache configurations, this does in fact appear
to be the optimal cache configuration.

sp_omp.srrip.9_4_d4 dat Misses: 9959
sp_omp.srrip.9_3_8.dat Misses: 10908
3500 Msp_omp.srip.8_4_8.datMisses: 11307

Figure 7: sp_omp.srrip.8_4_8
3. Conclusions

It takes some time getting familiarized with TTR curves to
figure out both how the added information from a TTR curve
to makes it more useful that miss rate. We tried for a while to
compare the curves with the ideal cache replacement strategy
for a given cache configuration in hopes that the TTR would
show where exactly a sub-optimal algorithm was being less
effective. We did not have a lot of luck with this approach.

Eventually we switched to using TTR to more quickly find
an optimal cache configuration as presented here, but that
process ended up exhausting nearly all relative cache configu-
rations, so there was not much savings in terms of computation
time. It may be interesting to run more cache configurations to
determine whether this process consistently finds the optimal
cache configuration. While TTR is an interesting way to build
designer intuition about cache performance, it does not signifi-
cantly change traditional design methodologies or simulating
a wide variety of configurations to determine which one is
optimal.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Si-
mon, and V. V. andd S. Weeretunga, “The NAS Parallel Benchmarks,”
International Journal of Supercomputer Applications, vol. 5, no. 3, pp.
63-73, Fall 1994.

[2] A. Carter, M. Korbel, P. Ning, and J. Spjut, “Qualitative Cache Perfor-
mance Analysis,” in Technical Report, 2013.

[3] ——, “TTR Github Repository,” 2013, [Online; accessed 16-February-
2017]. [Online]. Available: https://github.com/Clay- Wolkin-Fellowship/
spock

[4] A. Jaleel, K. Theobald, S. Steely, and J. Emer, “High Performance
Cache Replacement Using Re-Reference Interval Prediction (RRIP),” in
Proceedings of ISCA, 2010.

[5] J. Spjut and S. Pugsley, “Time to Recache: Measuring Memory Miss
Behavior,” Technical Report, Sep. 2011.


https://github.com/Clay-Wolkin-Fellowship/spock
https://github.com/Clay-Wolkin-Fellowship/spock

	Introduction
	Methodology and Results
	Conclusions

