
Qualitative Cache Performance Analysis

Andrew Carter Max Korbel Paula Ning Josef Spjut

Department of Engineering, Harvey Mudd College
September 23, 2013

Abstract
The effectiveness of caching policies has been measured

by a number of metrics. The ultimate quantitative measure is
overall system performance. Other metrics such as hit rate,
misses per thousand instructions and instructions per cycle
are also regularly used in the literature to compare cache be-
haviors. In this work we propose a novel class of metrics based
on the idea that any memory element should ideally be kept
out of the cache for as long as possible before being fetched
again, an idea inspired by Belady’s algorithm. In general we
measure the Time to Recache for each evicted element as a
qualitative measurement of a caching policy’s performance.
Among this set of metrics, we analyze the number of Memory
Accesses and Memory Misses to Recache, as well as a rough
approximation of Wall-Time to Recache. We believe that these
metrics will not only be useful for comparing the performance
of two different caching policies, but allow designers of such
policies to identify memory access patterns that are problem-
atic for existing policies. We also provide our simulation and
testing methodology and source to assist others in applying
these metrics to their own studies.

1. Introduction
Caching is used in processor design to keep data close to the
computational units. This reduces memory access latency,
which in turn reduces the cycles per instruction (CPI) of a pro-
gram, ideally improving system performance. In an effort to
improve the effectiveness of caches, a variety of cache policies
have been proposed. Laszlo Belady [3] proposed an optimal al-
gorithm that involves always evicting the cache block that will
be next used furthest in the future. Unfortunately this requires
knowing ahead of time what memory the program will access
and the order in which that memory will be accessed. On-
line algorithms have been developed to approximate Belady’s
algorithms, these include Least Recently Used (LRU), Not Re-
cently Used (NRU), and more recently Re-reference Interval
Prediction (RRIP) [6], in the forms of Static RRIP (SRRIP),
Bimodal RRIP (BRRIP), and Dynamic RRIP (DRRIP). LRU
and NRU were proposed on the basis that if a processor just
used a cache block, it is likely to be used sooner than a cache
block it has not used in a while. The RRIP policies attempt to
determine the future usefulness of cache blocks, and evicting
cache blocks that are not likely to be used in the future. These
policies are discussed at length in Section 3.2

In this paper we propose the use of a class of Time to Re-
cache (TTR) metrics [11] in offering insight into why different

cache management policies perform better than others. There
are a variety of different ways to measure TTR, including
Memory Accesses to Recache (MATR), Memory Misses to
Reacache (MMTR), Wall-time to Recache (WTTR). This class
of metrics refers to the time spent by a cache line after it has
been evicted from the cache and before being fetched again.
It is related to, but distinct from, the notion of “reuse distance,”
which refers to the amount of time between successive ac-
cesses to a given cache block. The TTR-based metrics are
discussed in detail in Section 2.3.

2. System Performance Metrics

Computer performance is dependent on a variety of factors,
ranging from very low level features like the latency of in-
dividual functional units, bypass networks, and out-of-order
hardware, up through very high level features such as oper-
ating systems, disk I/O, and network latency. In this paper
we focus our attention on the performance of the CPU cache,
though other caching systems could also make use of TTR
metrics. The quality of a cache is typically gauged by two
factors, the improvement in performance, measured in Instruc-
tions Per Clock (IPC), that it affords to the processor it backs,
and the reduction of Misses Per 1000 Instructions (MPKI),
which equates to a reduction in the number of longer latency
memory accesses from upper level caches.

2.1. IPC

The number of instructions a CPU can complete in a single
clock cycle can be equated with its absolute performance. If
a processor can complete more instructions in a given clock
cycle than another, then the program will complete execution
sooner and its performance is better. Hardware caches play a
critical role in boosting this number. The closer that data sits
to the functional units, the higher performance can be. In a
typical three level cache hierarchy, it can take 10x longer to
access the third level of cache than the first, and another 10x
longer to access main memory. Finding data as close to the
processor as possible is critical for high performance.

2.2. MPKI

One of the cache’s main jobs is to reduce the number of mem-
ory accesses that are performed on the next level of cache.
Each cache miss includes accessing the next level cache, and
possibly writing back if that cache block is dirty. If the next
level cache is shared, then there may be contention between

1



the different processors. There is a lot of work that has to be
done in the event of a cache miss, so reducing the MPKI of a
cache is a popular and important metric to look at.

While both IPC and MPKI are good for comparing how one
caching policy compares with another, neither provides insight
on what sort of memory accesses the cache could improve to
increase performance. Furthermore, a more detailed look at
the impact of an application on cache behavior could be very
useful for cache designers.

2.3. TTR

In this work we expand and analyze the previously pro-
posed [11] Time to Recache (TTR) methodology for examin-
ing the behavior and effectiveness of the caching policy. TTR
is defined as the amount of time (measured in a variety of
different manners) that a cache block spends outside of the
cache after it has been evicted and before it is accessed again.
Note that this is distinct from the concept of reuse distance.
Reuse distance is the time between successive accesses to a
piece of data or cache block. TTR does not take into account
the amount of time a cache block spent in the cache before
it was evicted. Unlike TTR, reuse distance is independent
of a replacement policy, and is therefore not very useful in
analyzing a replacement policy. TTR only tracks the time
spent after eviction and before reuse, making it dependent on
the replacement policy based on when the cache block was
evicted. In this paper, we propose the use of three variants of
the TTR metric.

WTTR: Wall Time to Recache (WTTR), is defined as the
amount of real world time the CPU takes (either in cycles, or
in seconds for a known clock frequency) before a cache block
is accessed again. Due to limitations in our trace collection
and simulation methodology, we approximate WTTR by as-
signing a “wall time” cost to instructions and cache misses.
Note that total wall time is the ideal measurement for total
system performance and is therefore a desirable metric for
performance analysis.

MATR: Memory Access to Recache (MATR), is defined as
the number of memory accesses that occur before the cache
block is accessed after eviction. This is much easier to gather
in our simulations but is not as close to the real performance
as WTTR.

MMTR: Memory Misses to Recache (MMTR), is defined
as the number of cache misses from the time that a given cache
block is evicted until it is returned to the cache. This is also
straightforward to gather even in trace-based simulations, but
is affected by the hit rate of the caches.

Belady’s optimal algorithm [3] for cache eviction always
evicts the cache block whose reuse is furthest in the future,
allowing that free space to be used as long as possible by
other data before being recached. It is impossible to know
at runtime for general workloads which cache block has the
furthest reuse distance, hence why there are so many different
caching policies that use various heuristics in an effort to

approach the effectiveness of this optimal algorithm.
Measuring the IPC and MPKI of a workload using one

caching policy, and comparing that to the IPC and MPKI of
running that workload with a different caching policy can give
you some sense of how close each of those caching policy
comes to the optimal solution. This is, however, an indirect
approach to quantifying how well a caching policy is perform-
ing. Tracking the TTR is a direct means of comparing two
caching policies.

TTR is an effective metric because it asks the question every
time a cache block is brought into the cache, “have I seen this
block before, and if so, how long ago was it?” If caching policy
A answers this question with “4000 cycles ago,” and caching
policy B answers this question with “6000 cycles ago,” then
caching policy B has done a better job at evicting that cache
block early and allowing that space to be used by other data.
With TTR, a higher number is better. A low TTR number
means that the cache block was evicted and then recached
very soon afterwards, suggesting that it should not have been
evicted in the first place.

However not one TTR metric tells the whole story. In
aggregate, it is hard to tell the difference between recaching
after CPU intensive calculations, a small working set, and a
large number of evictions. By having all three metrics, we can
perhaps determine that a low WTTR actually had a relatively
high MMTR, indicating that the working set was simply too
large for our cache. Thus despite a low WTTR, it is probably
hard to improve the cache over that range. Similarly if MATR
or MMTR is very low, but WTTR is very high, then that
portion of code is probably CPU bound, and there is no need
to improve the caching algorithm over that region.

3. Methodology
We simulate a set associative cache using a number of different
replacement policies. We use a statistical sampling technique
to keep our total simulation time down while still ensuring
our results are representative of the overall behavior for the
application in question. Our simulation framework can be
found on Github [4].

We chose to use the NAS Parallel Benchmarks [1] as a set
of reference programs to explore our metrics. We specifically
ended up using sp_omp with only one thread in this paper
because it showed the most interesting results. PIN [8] was
used to get a memory trace of the program, then this mem-
ory trace was sampled in a manner that will be discussed in
3.1, and then the sampled traces were run through a Cache
policy simulator, which we wrote in Python. Using the cache
replacement results and the original sampled traces, we then
constructed MATR, MMTR, and WTTR for each policy.

3.1. Sampling Technique

We sampled the file to minimize the data set we operated on,
while maintaining the integrity with results. We took 100 sam-
ples of 2 million memory accesses generated by sp_omp instru-

2



mented by PIN. By the central limit theorem we can approx-
imate samples of this size as having a Gaussian distribution.
Each sample was divided into 3 sections, a warm-up period
of 100 thousand memory accesses, a sampling period of 1.4
million memory accesses, and a cool-down period of 500 thou-
sand memory accesses. For each metric we warmed up the
cache during the warm-up period, then measured how long it
took for any cache line evicted during the sampling period to
be recached. Cache lines that took longer than the cool-down
period to recache were ignored. We felt that cache lines that
took more than 500 thousand memory accesses to recache
were unlikely to be interesting.

3.2. Caching Policies

Accessing a cache line for the first time causes it to be added to
the cache. Each cache line contains 64 bytes of data. We use
7 of the cache line address bits to decide which set the cache
line maps to. Each set is a 8-way associative set, and when all
of the ways in a set are filled, and we want to insert another
cache line into the set, then one of the old cache lines must
be selected for eviction to make way for new data. We test
several different cache replacement policies which determine
the cache line to be evicted in the event of an associativity
conflict. The new cache line is always placed in the same
cache way that was vacated by the evicted data.
3.2.1. Belady Belady’s algorithm [3] was proposed in the
context of page replacement, but its principle also applies in
cache replacement. The algorithm is to choose the cache line
to be evicted whose next access is furthest in the future. This
is the optimal cache replacement strategy, but it requires oracle
knowledge of the total order of all memory accesses in the
program, which is not generally knowable at the time of cache
replacement. We show TTR results for Belady’s algorithm
anyway as an optimal baseline to compare the other cache
replacement algorithms against.
3.2.2. Random While Belady’s algorithm requires perfect
knowledge of all memory accesses in a program, the Random
cache replacement algorithm requires no knowledge what-
soever about the order of memory accesses in the program.
When each cache replacement decision is to be made, a ran-
dom number is generated that decides which way of the set to
evict.

All of the other evaluated cache replacement policies will
behave differently because of, and respond to, program be-
havior in one way or another, but the Random algorithm is
not affected in any way by program behavior. This algorithm
requires the storage of no additional state per cache line to
implement.
3.2.3. FIFO First In First Out, or FIFO, chooses the cache line
to evict from the set that has been in the cache longest. Neither
reuse, nor any other factors, has any bearing in deciding which
cache line to evict in the FIFO algorithm. This algorithm
requires only enough per-set state to point to the cache line in
that set that will be evicted and replaced next.

3.2.4. LRU Least Recently Used, or LRU, choose to evict
the cache line from the set whose most recent access was
furthest in the past. Conceptually this works like a queue,
where eviction candidates are always chosen from the tail of
the queue, and both initial use and subsequent reuse promotes
cache lines to the front of the queue, furthest away from being
in danger of eviction. In the absence of cache line reuse,
this algorithm behaves identically to FIFO. This algorithm
requires enough state per cache line to enforce an absolute
order between all members of a set, typically log2(N) bits per
cache line, where N is the associativity of the set.
3.2.5. NRU Not Recently Used, or NRU, is a simplification of
the mechanism and storage overheads in LRU, and is similar
in operation to the clock algorithm in page replacement. There
is 1 bit of state maintained per cache line in a set. A value of
“0” means that the cache line has been “recently used,” and is
therefore not a candidate for eviction. A value of “1” means
that the cache line has “not been recently used,” and may be
evicted. Re-referencing a cache line causes its NRU state to
be set to “0”.

The eviction victim is found by linearly scanning through
the NRU state bits in a set (in a left-to-right fashion) and evict-
ing the cache line corresponding to the first “1” encountered.
If no “1”s are encountered, then all NRU bits are changed to
1 and the same victim selection process is repeated, i.e., the
cache line in way “0” will be evicted.
3.2.6. SRRIP Static Re-Reference Interval Prediction [6], or
SRRIP, is similar to NRU, but it uses multiple bits to encode
how recently a cache line has been used, and therefore how
soon it is predicted to be used again. For this study, we use 2
bits to encode the Re-Reference Prediction Values (RRPVs)
for all RRIP-derived cache replacement algorithms, meaning
that RRPVs are in the range of 0 to 3. An RRPV of 0 means
that the cache line was recently used, and is in little danger of
eviction, and an RRPV of 3 means that the cache line was not
recently used, and is in danger of imminent eviction.

SRRIP works by assigning an RRPV of 2 to each cache
line when it is initially brought into the cache. Reuse of a
cache line promotes its RRPV to 0. Eviction victim selection
is done by scanning through the set, left-to-right, and looking
for a cache line whose RRPV is 3. The first encountered 3
is evicted. If no 3s are found, then all RRPVs in the set are
incremented, and the scan to look for a 3 repeats. This process
may repeat several times until a 3 is found and evicted.
3.2.7. BRRIP Bimodal RRIP [6], or BRRIP is similar to
SRRIP, and varies only in the initial RRPV of cache lines
when they are first brought into the cache. Whereas SRRIP
always assigns an RRPV of 2 to incoming cache lines, BRRIP
assigns an RRPV of 3 95% of the time, and an RRPV of 2
only 5% of the time. This offers resistance to scans through
memory that may otherwise thrash the cache. In the absence
of cache line reuse, BRRIP results in only a single way of each
set being thrashed, rather than every way, as can happen in
LRU, NRU, or SRRIP.

3



The mechanisms of scanning through the set to find an
RRPV of 3, and incrementing all RRPVs if a 3 is not found,
are identical to SRRIP.
3.2.8. DRRIP Dynamic RRIP [6], or DRRIP, chooses to use
either SRRIP or BRRIP at run-time, depending on which cache
replacement policy is currently more effective at minimizing
cache misses. This is done by permanently assigning a small
number of sets in the cache to always follow the SRRIP policy,
and permanently assigning a small number of other sets to
always follow the BRRIP policy. Each cache miss in a SRRIP-
only set will increment a policy selection counter, and each
cache miss in a BRRIP-only set will decrement the policy
selection counter.

Depending on the value of the policy selection counter, ei-
ther SRRIP or BRRIP will be considered to currently be caus-
ing more cache misses than the other. The remaining cache
sets that are not permanently assigned to follow a specific
cache replacement policy will then use the cache replacement
policy of whichever candidate policy is currently causing the
fewest cache misses.

The mechanisms of scanning through the set to find an
RRPV of 3, and incrementing all RRPVs if a 3 is not found,
are identical to SRRIP and BRRIP for all sets, regardless of
which replacement policy they are using.

4. Results
We present results from Belady, Random(rand), FIFO, and all
of the RRIP policies (SRRIP, DRRIP, BRRIP). These polcies
were run against a trace of sp_omp run on a single core, with
a 8-way set associative cache, with 7 bits of direct mapping
within each set, and 64 byte cache lines. We limited the graphs
to only show MATR because we believe that for this particular
trace, and this set of replacement polcies, this TTR best shows
the usefulness of the TTR metrics in general.

Figures 1-6 show each individual replacement policy, as
well as the error in measurement due to our sampling strategy.
Figures 7-13 show a side-by-side comparison of two different
replacement policies.

In each graph, any (x,y) point corresponds to y evictions
that took x thousand memory accesses to be recached. To
smooth out the graph, these points have been collected into
1000 buckets, each bucket represents an area of 500 Memory
Access.

Figure 1: Bucketed MATR for BELADY

Figure 2: Bucketed MATR for RAND

Figure 3: Bucketed MATR for FIFO

4



Figure 4: Bucketed MATR for SRRIP

Figure 5: Bucketed MATR for DRRIP

Figure 6: Bucketed MATR for BRRIP

Figure 7: Bucketed MATR for BELADY vs. SRRIP

Figure 8: Bucketed MATR for BELADY vs. RAND

Figure 9: Bucketed MATR for BELADY vs. DRRIP

5



Figure 10: Bucketed MATR for SRRIP vs. RAND

Figure 11: Bucketed MATR for SRRIP vs. DRRIP

Figure 12: Bucketed MATR for SRRIP vs. FIFO

Figure 13: Bucketed MATR for DRRIP vs. BRRIP

5. Analysis

We chose sp_omp because it showed an interesting distribution
of MATR results. We have plotted several replacement poli-
cies against each other to show the difference between these
policies. Specifically we have plotted replacement algorithms
against Belady’s Optimal Algorithm to find out what these
policies could do better. As you can see all cache algorithms
have a lot of replacements under 100 K memory accesses from
eviction. However, there are also three peaks around 250 K,
300 K, and 350 K memory accesses. The intuition of how to
read a TTR graph is as follows. A high y value is generally
bad, because it means there were many evictions and recaches,
however if Belady also has a high y value, than this is a prop-
erty of the program, and your caching policy cannot do better,
(the program however could possibly be rewritten). Many
TTR graphs include humps in their distribution, humps that
appear significantly later than any equivalent hump in Belady
are bad, this means that you are holding onto data for too long.
Humps that do no appear at all in Belady, means that it would
be optimal to hold the data long enough for the next memory
access to occur, in this case your caching policy does not hold
onto data long enough.

For instance in Figures 7,8,9 we see many peaks at less
then 100 K memory accesses in SRRIP, RAND, and DRRIP.
However in general we see much smaller peaks in Belady,
indicating that our caching policies are holding onto the wrong
data. In fact Belady has a relatively large peak just short of
100K indicating that none of the caching policies are correctly
evicting those cache blocks, although RAND and DRRIP do a
much better job than SRRIP as seen in Figures 10,11. As seen
in Figure 7, for the three humps mentioned before (at 250, 300,
and 350 K memory accesses), SRRIP evicts much too late, and
in Figure 12 we can see that it chooses evicts around the same
time as FIFO. As seen in Figures 9,11, DRRIP appears to split
the difference between Belady and SRRIP. It has two smaller
peaks for each peak in Belady, one around were SRRIP’s peak
is and one near Belady’s. Similarly Figure 13 shows a similar

6



distribution for BRRIP. This means that DRRIP and BRRIP
are able to correctly predict some of the time that a cache block
will not be used again significantly earlier than SRRIP and
FIFO are able to make that prediction. Finally RAND, spreads
out the peak accross the interval from Belady to SRRIP as
seen in Figures 8,10. This is expected because of the random
nature of the policy, sometimes it will evict as early as Belady,
and sometimes it will evict as late as or later than FIFO, but
most often it will evict some time in between, this reinforces
the idea that DRRIP and BRRIP are able to make informed
decisions about these cache blocks, as they, in contrast show a
trough in the middle.

These graphs indicate, at least for sp_omp, that replacement
policy designer’s should look into ways to evict the cache
blocks of the three humps as early as Belady does above and
beyond what DRRIP and BRRIP already do. Furthermore they
should also try to keep a lot more of the cache blocks that are
accessed within 95K memory accesses, as Belady outperforms
the other cache algorithms by quite a bit in that range.

6. Related Work
Effective management of the contents of the cache can be
greatly beneficial to the performance of a processor. It can
lower average memory access latency. , and conserve off-chip
memory bandwidth. In this section, we discuss some recent
attempts at improving the contents of caches, and how they
relate to the TTR metric. We also discuss other tools and
visualization techniques that have been proposed to improve
cache performance by influencing the way code is written.

Lai and Falsafi [7] use the idea of dead block prediction to
anticipate when the last touch of a cache line would be before
it is naturally evicted from the cache. Their main observation
is that the last access to a cache line occurs long before it
becomes the LRU cache line in a set and is chosen for eviction,
so they instead try to evict a cache block as soon as it is
predicted to no longer be useful. This can directly influence
the TTR of cache lines by evicting a line before a regular
replacement policy would choose to do so, thereby giving it
more time to spend outside of the cache before it is recached.

Basu et. al. [2] investigate the concept of eviction-use
distance as motivation for their Scavenger LLC architecture,
which identifies cache blocks that are recently missed in the
LLC, and then puts them into a separate region of cache that
protects them from their frequent eviction. Seshadri et. al. [10]
do something similar with their eviction address filter. They
use a Bloom filter to identify cache lines that are returning
to the cache recently after having been evicted, and these
cache lines are given lower initial RRPVs. These technique
can improve TTR metrics by identifying and offering eviction
resistance to a subset of the most often thrashed cache lines,
favoring instead to evict cache lines that are unlikely to be
immediately reused.

Manikantan et. al. [9], identify delinquent memory opera-
tion instruction addresses and track histograms of the next-use

of the cache blocks brought in by them. Some of the ways of
the LLC are dedicated to blocks brought in by the delinquent
PCs, so that they do not pollute the rest of the ways. Their
work takes a different approach to improving the quality of
the contents of the cache by trying to prefer to evict offending
data rather than to explicitly protect useful data. This would
improve TTR data by evicting useless data early, and allowing
useful data to have longer cache residence.

Some research has also been done in the area of cache per-
formance visualization. Choudhury and Rosen [5] developed
a visualization tool that tracks individual cache lines as they
move from main memory through the various levels of the
cache, and as they are inserted, reused, and evicted from each
cache level. This tool was developed in the context of trying
to see with a graphical interface how the code a programmer
wrote interacts with the cache hierarchy, and is not directly
meant to be a means to evaluate the quality of cache manage-
ment strategies, as TTR is.

7. Conclusions

In this work we have presented a class of metrics for cache
studies that provide deeper insight into the behavior of the
replacement algorithm when used for a particular application.
When Belady’s algorithm is used, one can discover inflection
points that cause poor cache performance in the application. A
comparison between TTR for Belady’s algorithm and any set
of replacement policies can provide insight for cache design-
ers to choose replacement policies that are appropriate for the
class of applications that the designer deems important. Fur-
thermore, our sampling technique allows for quick iteration
in policy design with rapid feedback to the developer. MATR
was reasonably straightforward to capture in our simulations,
but other types of TTR may be more useful or easy to record
in other contexts.

TTR differs from traditional metrics like IPC and MPKI
by providing a qualitative resource for cache performance.
IPC and MPKI only indicate how well a replacement pol-
icy performs, but not where it performs badly. In contrast,
TTR provides replacement policy designers insight on how to
improve their policy.

While we have presented these metrics in the context of
CPU caches, the potential application for these techniques
extends beyond CPU cache design. For example, large web
applications employ DRAM as a cache for large databases
held on arrays of disc drives as a method for increasing input
and output operation throughput. Additionally, other appli-
cation specific integrated circuits and processors that utilize
caching may find TTR useful. In order to assist others in using
our techniques, we have released our source code publicly
(reference withheld) and encourage revisions and additions as
appropriate for other domains.

7



8. Acknowledgements
Thanks to Seth Pugsley for helpful discussions and reviewing
a version of this document.

References
[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,

R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, and V. V. andd S. Weeretunga, “The NAS Parallel Bench-
marks,” International Journal of Supercomputer Applications, vol. 5,
no. 3, pp. 63–73, Fall 1994.

[2] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez,
“Scavenger: A New Last Level Cache Architecture with Global Block
Priority,” in Proceedings of MICRO, 2007.

[3] L. Belady, “A Study of Replacement Algorithms for a Virtual-Storage
Computer,” IBM Systems Journal, 1966.

[4] A. Carter, M. Korbel, P. Ning, and J. Spjut, “TTR Github Repository,”
2013, [Online; accessed 16-February-2017]. [Online]. Available:
https://github.com/Clay-Wolkin-Fellowship/spock

[5] A. Choudhury and P. Rosen, “Abstract visualization of runtime memory
behavior,” in 6th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, ser. VisSoft, 2011, pp. 22–29.

[6] A. Jaleel, K. Theobald, S. Steely, and J. Emer, “High Performance
Cache Replacement Using Re-Reference Interval Prediction (RRIP),”
in Proceedings of ISCA, 2010.

[7] A.-C. Lai and B. Falsafi, “Selective, Accurate, and Timely Self-
Invalidation Using Last-Touch Prediction,” in Proceedings of ISCA-27,
2000, pp. 139–148.

[8] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation,” in Proceedings
of PLDI, 2005.

[9] R. Manikantan, K. Rajan, and R. Govindarajan, “NUcache: An Effi-
cient Multicore Cache Organization Based on Next-Use Distance,” in
Proceedings of HPCA, 2011.

[10] V. Seshadri, O. Mutlu, M. Kozuch, and T. Mowry, “The evicted ad-
dress filter: A unified mechanism to address both cache pollution and
thrashing,” in Proccedings of PACT, 2012.

[11] J. Spjut and S. Pugsley, “Time to Recache: Measuring Memory Miss
Behavior,” Technical Report, Sep. 2011.

8

https://github.com/Clay-Wolkin-Fellowship/spock

	Introduction
	System Performance Metrics
	IPC
	MPKI
	TTR

	Methodology
	Sampling Technique
	Caching Policies
	Belady
	Random
	FIFO
	LRU
	NRU
	SRRIP
	BRRIP
	DRRIP


	Results
	Analysis
	Related Work
	Conclusions
	Acknowledgements

